Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
J Extra Corpor Technol ; 54(3): 223-234, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2235887

ABSTRACT

Coagulopathies develop in patients supported with the use of extracorporeal membrane oxygenation (ECMO) and can be hemorrhagic and/or thrombophilic in spite of the use of systemic anticoagulation. The purpose this study was to examine the use of heparin and direct thrombin inhibitors (DTI) in COVID-19 patients with acute respiratory distress syndrome (ARDS) on ECMO, with a subset analysis by disease state. Following IRB approval, 570 consecutive records were reviewed of adult patients on venovenous ECMO between May 2020 and December 2021. Patients were grouped by anticoagulant use: Heparin Only (n = 373), DTI Only (bivalirudin or argatroban, n = 90), or DTI after Heparin (n = 107). The effect of anticoagulant grouping was assessed using Bayesian mixed-effects logistic regression adjusting for age, body mass index (BMI), gender, days of mechanical ventilation prior to ECMO, indication for ECMO support, hepatic and renal failure, hours on ECMO, hours off anticoagulation, coagulation monitoring target, and hospital. The primary endpoint was circuit failure requiring change-out with secondary endpoints of organ failure and mortality. Regression-adjusted probability of circuit change-outs were as follows: DTI after Heparin patients-32.7%, 95% Credible Interval [16.1-51.9%]; DTI Only patients-23.3% [7.5-40.8%]; and Heparin Only patients-19.8% [8.1-31.3%]. The posterior probability of difference between groups was strongest for DTI after Heparin vs. Heparin Only (97.0%), moderate for DTI after Heparin vs. DTI Only (88.2%), and weak for DTI Only vs. Heparin only (66.6%). The occurrence of both hepatic and renal failure for DTI Only and DTI after Heparin patients was higher than that of Heparin Only patients. Unadjusted mortality was highest for DTI after Heparin (64.5%) followed by DTI Only (56.7%), and Heparin Only (50.1%, p = 0.027). DTI after Heparin was associated with an increased likelihood of circuit change-out. Unadjusted hepatic failure, renal failure, and mortality were more frequent among DTI patients than Heparin Only patients.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Adult , Humans , Heparin/therapeutic use , Antithrombins/therapeutic use , Extracorporeal Membrane Oxygenation/adverse effects , Bayes Theorem , COVID-19/therapy , COVID-19/etiology , Anticoagulants/therapeutic use , Respiratory Distress Syndrome/drug therapy , Retrospective Studies
2.
Tohoku J Exp Med ; 258(4): 327-332, 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2109461

ABSTRACT

Antithrombin deficiency is a high-risk factor for venous thromboembolism during pregnancy, whereas cerebral venous thrombosis is rare. Cerebral venous thrombosis related to coronavirus disease 2019 (COVID-19) vaccines has been reported; however, there are a few reports of cerebral venous thrombosis after a messenger RNA (mRNA) vaccination. A 25-year-old female in her sixth week of pregnancy presented with headache 24 days after BNT162b2 mRNA COVID-19 vaccination. The following day, she presented with altered sensorium and was diagnosed with severe cerebral venous thrombosis. She demonstrated heparin resistance and was found to have an inherited antithrombin deficiency. A heterozygous missense variant in SERPINC1 (c.379T>C, p.Cys127Arg, 'AT Morioka') was detected by DNA analysis. Despite intensive care with unfractionated heparin, antithrombin concentrate, and repeated endovascular treatments, she died on the sixth day of hospitalization. Cerebral venous thrombosis in pregnant women with an antithrombin deficiency can follow a rapid and fatal course. Treatment with unfractionated heparin and antithrombin concentrate may be ineffective in severe cerebral venous thrombosis cases with antithrombin deficiency. Early recognition of antithrombin deficiency and an immediate switch to other anticoagulants may be required. Although the association between cerebral venous thrombosis and the vaccine is uncertain, COVID-19 vaccinations may require careful evaluation for patients with prothrombic factors.


Subject(s)
Antithrombin III Deficiency , COVID-19 , Venous Thrombosis , Humans , Female , Pregnancy , Adult , Pregnant Women , COVID-19/complications , COVID-19 Vaccines/adverse effects , BNT162 Vaccine , Heparin , RNA, Messenger , Antithrombin III Deficiency/complications , Antithrombin III Deficiency/genetics , Antithrombins/therapeutic use , Anticoagulants , Venous Thrombosis/etiology , Vaccination/adverse effects
3.
Int J Mol Sci ; 23(20)2022 Oct 18.
Article in English | MEDLINE | ID: covidwho-2082320

ABSTRACT

Recent research has contributed significantly to our understanding of the pathogenesis of acute disseminated intravascular coagulation. COVID-19 can be considered as a new underlying condition of disseminated intravascular coagulation. In this narrative review, current evidence is presented regarding biomarker differences between sepsis-induced and COVID-19-associated coagulopathies, supporting the importance of acquired antithrombin deficiency in the early differential diagnosis of septic coagulopathy and its potential impact on treatment with endogenous anticoagulants. Establishing new scoring systems for septic coagulopathy in combination with endogenous anticoagulant biomarker activities may allow for the identification of those in the heterogeneous population of sepsis patients who are more likely to benefit from targeted specific treatment interventions.


Subject(s)
Blood Coagulation Disorders , COVID-19 , Disseminated Intravascular Coagulation , Sepsis , Humans , Disseminated Intravascular Coagulation/drug therapy , Disseminated Intravascular Coagulation/etiology , Antithrombins/therapeutic use , COVID-19/complications , Anticoagulants/therapeutic use , Anticoagulants/pharmacology , Blood Coagulation Disorders/complications , Sepsis/complications , Antithrombin III , Biomarkers
5.
ASAIO J ; 68(7): 920-924, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-1967929

ABSTRACT

Extracorporeal membrane oxygenation (ECMO) contributes to coagulopathy, necessitating systemic anticoagulation to prevent thrombosis. Traditionally, unfractionated heparin (UFH) has been the anticoagulant of choice, however, due to many inadequacies new evidence suggests benefit with the use of direct thrombin inhibitors. This retrospective cohort sought to evaluate the safety and efficacy of bivalirudin compared to UFH in ECMO patients. Primary endpoints included incidence of bleeding and thrombosis. Percent time in therapeutic range (TR), time to achieve TR and number of dose titrations required to maintain TR were calculated to assess efficacy of institutional protocols. Overall incidence of thrombosis was low, with one event in the bivalirudin group and no events in the UFH group. No difference was found in rates of bleeding between groups (6% vs . 10%, P = 0.44). Bivalirudin yielded higher percent time in TR (86% vs. 33%, P < 0.001), faster time to TR (2 vs . 18 hr, P < 0.001) and required fewer dose adjustments to maintain TR (2 vs . 11, P < 0.001) compared to UFH. These results suggest bivalirudin and UFH are associated with similar rates of bleeding and thrombosis in patients requiring ECMO support. Our results demonstrate the favorable pharmacokinetic profile of bivalirudin, and its ability to consistently maintain TR when compared to UFH.


Subject(s)
Extracorporeal Membrane Oxygenation , Thrombosis , Adult , Anticoagulants/adverse effects , Anticoagulants/therapeutic use , Antithrombins/therapeutic use , Extracorporeal Membrane Oxygenation/adverse effects , Fibrinolytic Agents/therapeutic use , Hemorrhage/chemically induced , Hemorrhage/complications , Hemorrhage/prevention & control , Heparin/adverse effects , Heparin/therapeutic use , Hirudin Therapy , Hirudins/adverse effects , Humans , Peptide Fragments/adverse effects , Peptide Fragments/therapeutic use , Recombinant Proteins/adverse effects , Recombinant Proteins/therapeutic use , Retrospective Studies , Thrombosis/drug therapy , Thrombosis/etiology , Thrombosis/prevention & control , Treatment Outcome
6.
J Cardiothorac Vasc Anesth ; 36(8 Pt B): 2961-2967, 2022 08.
Article in English | MEDLINE | ID: covidwho-1795642

ABSTRACT

OBJECTIVES: To compare heparin-based anticoagulation and bivalirudin-based anticoagulation within the context of critically ill patients with a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. DESIGN: An observational study. SETTING: At the intensive care unit of a university hospital. PARTICIPANTS AND INTERVENTIONS: Critically ill patients with a SARS-CoV-2 infection receiving full anticoagulation with heparin or bivalirudin. MEASUREMENTS AND MAIN RESULTS: Twenty-three patients received full anticoagulation with bivalirudin and 60 with heparin. Despite patients in the bivalirudin group having higher mortality risk scores (SAPS II 60 ± 16 v 39 ±7, p < 0.001) and a higher need for extracorporeal support compared to the heparin group, hospital mortality was comparable (57% v 45, p = 0.3). No difference in thromboembolic complications was observed, and bleeding events were more frequent in patients treated with bivalirudin (65% v 40%, p = 0.01). Similar results were confirmed in the subgroup analysis of patients undergoing intravenous anticoagulation; in addition to comparable thrombotic complications occurrence and thrombocytopenia rate, however, no difference in the bleeding rate was observed (65% v 35%, p = 0.08). CONCLUSIONS: Although heparin is the most used anticoagulant in the intensive care setting, bivalirudin-based anticoagulation was safe and effective in a cohort of critically ill patients with SARS-CoV-2. Bivalirudin may be given full consideration as an anticoagulation strategy for critically ill patients with SARS-CoV-2, especially in those with thrombocytopenia and on extracorporeal support.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Thrombocytopenia , Anticoagulants , Antithrombins/therapeutic use , COVID-19/complications , Critical Illness/therapy , Extracorporeal Membrane Oxygenation/methods , Fibrinolytic Agents , Hemorrhage/chemically induced , Heparin/adverse effects , Hirudins , Humans , Recombinant Proteins/therapeutic use , Retrospective Studies , SARS-CoV-2 , Thrombocytopenia/chemically induced
9.
Crit Care Med ; 49(9): e870-e873, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1455369

ABSTRACT

OBJECTIVES: To describe the successful recovery from multiple and life-threatening venous thrombosis after ChAdOx1 nCoV-19 vaccination. DESIGN: Case report. SETTING: University Hospital. PATIENT: Few days after the first dose of the ChAdOx1 nCoV-19 vaccine, a 21-year-old woman experienced massive thrombosis in the deep and superficial cerebral veins together with seizures, neurologic focal deficit, and thrombocytopenia. In the neurointensive care unit, her condition worsened despite early decompressive craniectomy. She developed bilateral segmental pulmonary embolism, left hepatic, and left external iliac venous thrombosis. INTERVENTION: Argatroban (0.5-2.2 µg/kg/min) and high-dose IV immunoglobulin (1 g/kg/d for 2 consecutive days) were initiated on day 6 after admission. With these therapies, there was a gradual resolution of multiple sites of venous thrombosis, and platelet count returned to normal. The patient left the ICU with full consciousness, expressive aphasia, and right hemiparesis. CONCLUSIONS: This case of vaccine-induced immune thrombotic thrombocytopenia shows that a good outcome can be obtained even with multiple and life-threatening venous thrombotic lesions. Argatroban and high-dose IV immunoglobulin along with management of severe cerebral venous thrombosis played a major role in this epilogue.


Subject(s)
Antithrombins/therapeutic use , Arginine/analogs & derivatives , COVID-19 Vaccines/adverse effects , Pipecolic Acids/therapeutic use , Sulfonamides/therapeutic use , Thrombocytopenia/drug therapy , Venous Thrombosis/drug therapy , Arginine/therapeutic use , Cerebral Veins/diagnostic imaging , ChAdOx1 nCoV-19 , Drug Therapy, Combination , Female , Fondaparinux/therapeutic use , Humans , Immunoglobulins, Intravenous , Thrombocytopenia/etiology , Tomography, X-Ray Computed , Venous Thrombosis/etiology , Young Adult
13.
Int J Mol Sci ; 22(8)2021 Apr 20.
Article in English | MEDLINE | ID: covidwho-1299445

ABSTRACT

Antithrombin (AT) is a natural anticoagulant that interacts with activated proteases of the coagulation system and with heparan sulfate proteoglycans (HSPG) on the surface of cells. The protein, which is synthesized in the liver, is also essential to confer the effects of therapeutic heparin. However, AT levels drop in systemic inflammatory diseases. The reason for this decline is consumption by the coagulation system but also by immunological processes. Aside from the primarily known anticoagulant effects, AT elicits distinct anti-inflammatory signaling responses. It binds to structures of the glycocalyx (syndecan-4) and further modulates the inflammatory response of endothelial cells and leukocytes by interacting with surface receptors. Additionally, AT exerts direct antimicrobial effects: depending on AT glycosylation it can bind to and perforate bacterial cell walls. Peptide fragments derived from proteolytic degradation of AT exert antibacterial properties. Despite these promising characteristics, therapeutic supplementation in inflammatory conditions has not proven to be effective in randomized control trials. Nevertheless, new insights provided by subgroup analyses and retrospective trials suggest that a recommendation be made to identify the patient population that would benefit most from AT substitution. Recent experiment findings place the role of various AT isoforms in the spotlight. This review provides an overview of new insights into a supposedly well-known molecule.


Subject(s)
Antithrombins/pharmacology , Disease Resistance/drug effects , Disease Susceptibility , Host-Pathogen Interactions , Inflammation/etiology , Inflammation/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antithrombins/therapeutic use , Biomarkers , Disease Management , Host-Pathogen Interactions/drug effects , Humans , Immunomodulation/drug effects , Inflammation/drug therapy , Inflammation/pathology , Organ Specificity , Signal Transduction/drug effects
14.
Sci Prog ; 104(2): 368504211025927, 2021.
Article in English | MEDLINE | ID: covidwho-1268172

ABSTRACT

With over 600 million coronavirus (COVID-19) vaccine doses administered globally, adverse events are constantly monitored. Recently however, reports of thrombosis and thrombocytopenia following vaccination with the ChAdOx1 nCoV-19 vaccine have emerged. This paper aims to review the available literature and guidelines pertaining to vaccine-induced immune thrombotic thrombocytopenia (VITT) and the proposed guidelines, while offering a potential approach that unifies the available evidence. While the risk of VITT remains extremely low and the benefits outweigh the risks, experimental studies are needed to clarify the pathophysiology behind VITT and possibly decrease the risk of thrombosis and other adverse events occurring. However, treatment should not be delayed in suspected cases, and IV immunoglobulin and non-heparin anticoagulation should be initiated.


Subject(s)
Anticoagulants/therapeutic use , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Immunoglobulins, Intravenous/therapeutic use , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Thrombosis/drug therapy , Antithrombins/therapeutic use , Autoantibodies/blood , Biomarkers/blood , COVID-19/epidemiology , COVID-19/immunology , ChAdOx1 nCoV-19 , Factor Xa Inhibitors/therapeutic use , Fibrin Fibrinogen Degradation Products/metabolism , Fondaparinux/therapeutic use , Heparin/adverse effects , Humans , Practice Guidelines as Topic , Purpura, Thrombocytopenic, Idiopathic/blood , Purpura, Thrombocytopenic, Idiopathic/chemically induced , Purpura, Thrombocytopenic, Idiopathic/pathology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Thrombosis/blood , Thrombosis/chemically induced , Thrombosis/pathology
16.
Turk J Haematol ; 38(1): 15-21, 2021 02 25.
Article in English | MEDLINE | ID: covidwho-1045314

ABSTRACT

Objective: The defective interplay between coagulation and inflammation may be the leading cause of intravascular coagulation and organ dysfunction in coronavirus disease-19 (COVID-19) patients. Abnormal coagulation profiles were reported to be associated with poor outcomes. In this study, we assessed the prognostic values of antithrombin (AT) activity levels and the impact of fresh frozen plasma (FFP) treatment on outcome. Materials and Methods: Conventional coagulation parameters as well as AT activity levels and outcomes of 104 consecutive critically ill acute respiratory distress syndrome (ARDS) patients with laboratory-confirmed COVID-19 disease were retrospectively analyzed. Patients with AT activity below 75% were treated with FFP. Maximum AT activity levels achieved in those patients were recorded. Results: AT activity levels at admission were significantly lower in nonsurvivors than survivors (73% vs. 81%). The cutoff level for admission AT activity was 79% and 58% was the lowest AT for survival. The outcome in those patients who had AT activity levels above 75% after FFP treatment was better than that of the nonresponding group. As well as AT, admission values of D-dimer, C-reactive protein, and procalcitonin were coagulation and inflammatory parameters among the mortality risk factors. Conclusion: AT activity could be used as a prognostic marker for survival and organ failure in COVID-19-associated ARDS patients. AT supplementation therapy with FFP in patients with COVID-19-induced hypercoagulopathy may improve thrombosis prophylaxis and thus have an impact on survival.


Subject(s)
Antithrombins/blood , COVID-19/blood , COVID-19/therapy , Critical Illness/mortality , Aged , Aged, 80 and over , Antithrombins/physiology , Antithrombins/therapeutic use , Blood Coagulation Tests/methods , C-Reactive Protein/analysis , COVID-19/diagnosis , COVID-19/mortality , Case-Control Studies , Disseminated Intravascular Coagulation/etiology , Disseminated Intravascular Coagulation/prevention & control , Female , Fibrin Fibrinogen Degradation Products/analysis , Humans , Male , Middle Aged , Multiple Organ Failure/etiology , Multiple Organ Failure/prevention & control , Plasma , Procalcitonin/analysis , Prognosis , Retrospective Studies , SARS-CoV-2/genetics , Thrombophilia/complications , Thrombophilia/physiopathology , Turkey/epidemiology
18.
Med Hypotheses ; 146: 110394, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-919589

ABSTRACT

No definitive treatment for COVID-19 exists although promising results have been reported with remdesivir and glucocorticoids. Short of a truly effective preventive or curative vaccine against SARS-CoV-2, it is becoming increasingly clear that multiple pathophysiologic processes seen with COVID-19 as well as SARS-CoV-2 itself should be targeted. Because alpha-1-antitrypsin (AAT) embraces a panoply of biologic activities that may antagonize several pathophysiologic mechanisms induced by SARS-CoV-2, we hypothesize that this naturally occurring molecule is a promising agent to ameliorate COVID-19. We posit at least seven different mechanisms by which AAT may alleviate COVID-19. First, AAT is a serine protease inhibitor (SERPIN) shown to inhibit TMPRSS-2, the host serine protease that cleaves the spike protein of SARS-CoV-2, a necessary preparatory step for the virus to bind its cell surface receptor ACE2 to gain intracellular entry. Second, AAT has anti-viral activity against other RNA viruses HIV and influenza as well as induces autophagy, a known host effector mechanism against MERS-CoV, a related coronavirus that causes the Middle East Respiratory Syndrome. Third, AAT has potent anti-inflammatory properties, in part through inhibiting both nuclear factor-kappa B (NFκB) activation and ADAM17 (also known as tumor necrosis factor-alpha converting enzyme), and thus may dampen the hyper-inflammatory response of COVID-19. Fourth, AAT inhibits neutrophil elastase, a serine protease that helps recruit potentially injurious neutrophils and implicated in acute lung injury. AAT inhibition of ADAM17 also prevents shedding of ACE2 and hence may preserve ACE2 inhibition of bradykinin, reducing the ability of bradykinin to cause a capillary leak in COVID-19. Fifth, AAT inhibits thrombin, and venous thromboembolism and in situ microthrombi and macrothrombi are increasingly implicated in COVID-19. Sixth, AAT inhibition of elastase can antagonize the formation of neutrophil extracellular traps (NETs), a complex extracellular structure comprised of neutrophil-derived DNA, histones, and proteases, and implicated in the immunothrombosis of COVID-19; indeed, AAT has been shown to change the shape and adherence of non-COVID-19-related NETs. Seventh, AAT inhibition of endothelial cell apoptosis may limit the endothelial injury linked to severe COVID-19-associated acute lung injury, multi-organ dysfunction, and pre-eclampsia-like syndrome seen in gravid women. Furthermore, because both NETs formation and the presence of anti-phospholipid antibodies are increased in both COVID-19 and non-COVID pre-eclampsia, it suggests a similar vascular pathogenesis in both disorders. As a final point, AAT has an excellent safety profile when administered to patients with AAT deficiency and is dosed intravenously once weekly but also comes in an inhaled preparation. Thus, AAT is an appealing drug candidate to treat COVID-19 and should be studied.


Subject(s)
COVID-19 Drug Treatment , Models, Biological , alpha 1-Antitrypsin/therapeutic use , Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/therapeutic use , Antithrombins/therapeutic use , Antiviral Agents/therapeutic use , Apoptosis/drug effects , COVID-19/physiopathology , Extracellular Traps/drug effects , Host Microbial Interactions/drug effects , Host Microbial Interactions/physiology , Humans , Leukocyte Elastase/antagonists & inhibitors , Pandemics , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Serine Endopeptidases/drug effects , Serine Endopeptidases/physiology , Virus Internalization/drug effects , alpha 1-Antitrypsin/administration & dosage
19.
J Cardiovasc Pharmacol ; 76(4): 369-371, 2020 10.
Article in English | MEDLINE | ID: covidwho-835200

ABSTRACT

The use of heparin has been shown to decrease the mortality in hospitalized patients with severe COVID-19. The aim of our study was to evaluate the clinical impact of venous thromboembolism prophylaxis with fondaparinux versus enoxaparin among 100 hospitalized COVID-19 patients. The incidence of pulmonary embolism, deep venous thrombosis, major bleeding (MB), clinically relevant non-MB, acute respiratory distress syndrome, and in-hospital mortality was compared between patients on fondaparinux versus enoxaparin therapy. The 2 groups were homogeneous for demographic, laboratory, and clinical characteristics. In a median follow-up of 28 (IQR: 12-45) days, no statistically significant difference in venous thromboembolism (14.5% vs. 5.3%; P = 0.20), MB and clinically relevant non-MB (3.2% vs. 5.3%, P = 0.76), ARDS (17.7% vs. 15.8%; P = 0.83), and in-hospital mortality (9.7% vs. 10.5%; P = 0.97) has been shown between the enoxaparin group versus the fondaparinux group. Our preliminary results support the hypothesis of a safe and effective use of fondaparinux among patients with COVID-19 hospitalized in internal medicine units.


Subject(s)
Antithrombins/therapeutic use , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Factor Xa Inhibitors/therapeutic use , Fondaparinux/therapeutic use , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Venous Thrombosis/etiology , Venous Thrombosis/prevention & control , Aged , Anticoagulants/adverse effects , Anticoagulants/therapeutic use , Antithrombins/adverse effects , COVID-19 , Enoxaparin/adverse effects , Enoxaparin/therapeutic use , Factor Xa Inhibitors/adverse effects , Female , Fondaparinux/adverse effects , Hemorrhage/chemically induced , Hospital Mortality , Humans , Incidence , Male , Middle Aged , Pandemics , Pulmonary Embolism/complications , Retrospective Studies , Venous Thromboembolism/epidemiology , Venous Thromboembolism/prevention & control , Venous Thrombosis/epidemiology
20.
Trials ; 21(1): 769, 2020 Sep 07.
Article in English | MEDLINE | ID: covidwho-748922

ABSTRACT

OBJECTIVES: To assess the effect of anticoagulation with bivalirudin administered intravenously on gas-exchange in patients with COVID-19 and respiratory failure using invasive mechanical ventilation. TRIAL DESIGN: This is a single centre parallel group, superiority, randomized (1:1 allocation ratio) controlled trial. PARTICIPANTS: All patients admitted to the Hamad Medical Corporation -ICU in Qatar for COVID-19 associated respiratory distress and in need of mechanical ventilation are screened for eligibility. INCLUSION CRITERIA: all adult patients admitted to the ICU who test positive for COVID-19 by PCR-test and in need for mechanical ventilation are eligible for inclusion. Upon crossing the limit of D-dimers (1.2 mg/L) these patients are routinely treated with an increased dose of anticoagulant according to our local protocol. This will be the start of randomization. EXCLUSION CRITERIA: pregnancy, allergic to the drug, inherited coagulation abnormalities, no informed consent. INTERVENTION AND COMPARATOR: The intervention group will receive the anticoagulant bivalirudin intravenously with a target aPTT of 45-70 sec for three days while the control group will stay on the standard treatment with low-molecular-weight heparins /unfractionated heparin subcutaneously (see scheme in Additional file 1). All other treatment will be unchanged and left to the attending physicians. MAIN OUTCOMES: As a surrogate parameter for clinical improvement and primary outcome we will use the PaO2/FiO2 (P/F) ratio. RANDOMISATION: After inclusion, the patients will be randomized using a closed envelope method into the conventional treatment group, which uses the standard strategy and the experimental group which receives anticoagulation treatment with bivalirudin using an allocation ratio of 1:1. BLINDING (MASKING): Due to logistical and safety reasons (assessment of aPTT to titrate the study drug) only the data-analyst will be blinded to the groups. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): We performed a sample size calculation and assumed the data for P/F ratio (according to literature) is normally distributed and used the mean which would be: 160 and SD is 80. We expect the treatment will improve this by 30%. In order to reach a power of 80% we would need 44 patients per group (in total 88 patients). Taking approximately 10% of dropout into account we will include 100 patients (50 in each group). TRIAL STATUS: The local registration number is MRC-05-082 with the protocol version number 2. The date of approval is 18th June 2020. Recruitment started on 28th June and is expected to end in November 2020. TRIAL REGISTRATION: The protocol is registered before starting subject recruitment under the title: "Anticoagulation in patients suffering from COVID-19 disease. The ANTI-CO Trial" in ClinicalTrials.org with the registration number: NCT04445935 . Registered on 24 June 2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 2). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Antithrombins/therapeutic use , Coronavirus Infections/drug therapy , Peptide Fragments/therapeutic use , Pneumonia, Viral/drug therapy , Respiration, Artificial , Respiratory Distress Syndrome/therapy , Anticoagulants/therapeutic use , Betacoronavirus , COVID-19 , Coronavirus Infections/blood , Critical Illness , Fibrin Fibrinogen Degradation Products/metabolism , Heparin/therapeutic use , Heparin, Low-Molecular-Weight/therapeutic use , Hirudins , Humans , Pandemics , Partial Thromboplastin Time , Pneumonia, Viral/blood , Qatar , Recombinant Proteins/therapeutic use , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL